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Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by

right heart catheterisation and the exclusion of other forms of pulmonary arterial hyper-

tension, producing a heterogeneous population with varied treatment response. Here we

show unsupervised machine learning identification of three major patient subgroups that

account for 92% of the cohort, each with unique whole blood transcriptomic and clinical

feature signatures. These subgroups are associated with poor, moderate, and good prognosis.

The poor prognosis subgroup is associated with upregulation of the ALAS2 and down-

regulation of several immunoglobulin genes, while the good prognosis subgroup is defined by

upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C

variant of HLA-DPA1/DPB1 (independently associated with survival). These findings inde-

pendently validated provide evidence for the existence of 3 major subgroups (endopheno-

types) within the IPAH classification, could improve risk stratification and provide molecular

insights into the pathogenesis of IPAH.
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Pulmonary arterial hypertension (PAH) is a rare but devas-
tating disease characterised by sustained pulmonary vaso-
constriction and progressive pulmonary vascular

remodelling. This leads to an increase in pulmonary vascular
resistance and pulmonary artery pressure, resulting in right heart
failure and death1. The cause of idiopathic PAH (IPAH) remains
unknown and diagnosis is derived from the exclusion of other
forms of PAH, resulting in a heterogeneous group of patients who
have significant differences in survival and treatment response
across clinical cohort and registry studies2–5.

The pathobiology of PAH involves the complex interaction of
resident vascular cells, including endothelial cells, arterial smooth
muscle cells and fibroblasts, with infiltrating inflammatory cells,
and has been shown to be regulated by an ever growing number
of molecular and genetic mechanisms6–8. We have identified both
rare mutations9 and common variants10 in heritable and idio-
pathic PAH (H/IPAH) that have provided further insight into the
genetic underpinning of PAH. Additional proteomic11,
metabolomic12 and transcriptomic13 studies have described
diagnostic and prognostic biomarkers that add to our increasing
understanding of the molecular mechanisms that regulate disease
in this cohort. In Rhodes et al. we compared clinically defined H/
IPAH cases to healthy controls and defined an imperfect diag-
nostic signature for H/IPAH; however, we have not previously
examined the molecular heterogeneity that exists within H/IPAH
cases. Deep RNA profiling of blood samples have provided
accessible biomarkers to detect rare diseases14 and defined
molecular mechanisms behind myocardial infarction15. We
therefore investigated whether transcriptomic profiling of whole
blood can provide more granular molecular ‘endophenotypes’ of
H/IPAH to stratify patients better than is currently permissible
with the standard clinical classification. Furthermore, we hypo-
thesised that these transcriptome-defined subgroups would pro-
vide additional insights into biological pathways driving disease,
and potential drug targets offering a route to precision medicine
approaches for H/IPAH.

In this study, assessment of transcriptome patterns in whole
blood was conducted using unsupervised machine learning
agnostic to the clinical definitions and descriptors of H/IPAH.
We describe the unbiased partitioning of patients into multiple
distinct transcriptomic subgroups that associate with different
survival properties, each with predictive clinical and genetic fea-
tures. Specifically, we highlight the potential role of immunity and
immune genes in discrimination of PAH endophenotypes asso-
ciated with differential patient outcomes. These data further
highlight the concept that inflammation is an important mediator
of PAH pathogenesis16–22 and the discovery of distinct immune
subgroups from blood cytokine profiles of patients with
PAH16–18. Finally, we identify a specific panel of clinical features
that describe each transcriptomic subgroup and replicate these
subgroups in a validation cohort who did not undergo full
transcriptomic profiling using their clinical phenotype data. The
gene expression profile of key cluster associated genes was sub-
sequently confirmed, and the correlation with key clinical vari-
ables validated in both internal and external validation cohorts,
thereby validating our approach, and providing an alternative
method to define these endophenotypes without the need for
transcriptomic data.

Results
Unsupervised cluster analysis of whole-blood transcriptomes
reveals five distinct subgroups of H/IPAH. Whole blood sam-
ples from patients with H/IPAH (n= 359) were processed for
RNA-sequencing as previously described13. Samples from 359
patients and 21 samples collected from a second time point

underwent RNAseq data processing to reduce noise, and gene
filtering to remove gender bias as sex chromosomes produced the
highest variation in gene expression during clustering (Supple-
mentary Fig. 1). Sample collection site did not produce any dis-
cernible effect on clustering (Supplementary Figs. 2 and 3).
Simultaneously, the 300 genes that produced the most stable
expression dataset were utilised to identify unique subgroups of
gene expression profiles and describe the biological and clinical
descriptors of these subgroups (Fig. 1). A clustering algorithm for
selection and majority voting of multiple internal validation
indexes (Supplementary Data 1) allowed us to identify as statis-
tically optimal five distinct and stable subgroups of patients’
profiles (Fig. 2a) while retaining the maximum heterogeneity
information found in our dataset. The largest of the patient
clusters identified was subgroup I (n= 129), which had poorer
survival (53%, five-year median survival from sampling; Fig. 2b).
The second largest, subgroup II (n= 112), demonstrated the best
survival (78%, 5 years from sampling; Fig. 2b). Subgroup V
(n= 89) demonstrated a mixed gene expression pattern and
average survival outcome compared to subgroups I and II
(Fig. 2a, b). Subgroups III (n= 19) and IV (n= 10) also
demonstrated distinct gene expression patterns, with subgroup III
most similar to subgroup II, and subgroup IV similar to subgroup
I both in terms of gene expression level and survival outcomes.
Due to the small size of subgroups III and IV (making statistical
significance unattainable), we focused further characterisation of
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Fig. 1 Overview of IPAH subgroup identification methodology. a A cohort
of 359 IPAH patients and a set of 300 genes are selected for clustering
based on RNA data quality and variability of expression across samples.
b Spectral clustering of patients using expression values (TPM) was
benchmarked against hierarchical clustering (HC) and k-means clustering
(KM), and the optimal number of IPAH subgroups was selected based on
internal indexes. c Associated gene expression and clinical features were
identified and validated in independent cohorts.
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genetic and clinical correlates for subgroups I, II and V. The 33
HPAH patients in our PAH cohort showed an equal distribution
(~10%) among the subgroups of our initial clustering (Supple-
mentary Table 1), indicating that the inclusion of HPAH, or the
small number of mis-classified patients, did not drive the parti-
tioning procedure. An additional clustering pipeline exclusively
utilising 313 samples frοm patients with IPAH (i.e. excluding
those with HPAH, or re-classified PH) also showed five sub-
groups (Supplementary Fig. 4), where there were also a group of
patients with poorer survival (clusters B and E, n= 149), a group
with good survival (A and C, n= 109) and a group with moderate
survival (D, n= 55).

In order to determine whether the survival differences between
the three main (largest) transcriptomic subgroups were also
associated with disease severity in the surviving patients, we
calculated the REVEAL 2.0 risk score4 across all risk levels: low
(n= 146), moderate (n= 41), high (n= 44) and very high
(n= 15). Subgroup I which had the worst survival also had both
the highest percentage of patients in high-risk categories
(medium 43.9%, high 45.5% and very high 73.3%) and a lower
percentage (32.2%) in the low-risk category (Fig. 2c). In contrast,
subgroup II which had the best survival was composed mostly of
low-risk patients (38.3%), a proportion significantly different to
subgroup I (z-test p= 0.01422, Fig. 2c). The distribution of
subgroup V was uniform across the risk groups, except for a small
proportion of very-high-risk patients (6.6%). Age and sex were
also included as covariates with the subgroups in a Cox regression
model. Age above 52 years (median) was significantly associated
with poor survival (HR= 2.29) while gender showed no
relationship with overall survival. Even with these covariates,
subgroup I was still significantly associated with survival and was
the biggest risk factor (HR= 3.83) for poor outcome (Supple-
mentary Fig. 5). Within each subgroup, a small number of
patients had a second time-point sample collected on average
after 463 days. Patients with these longitudinal samples (n= 19)
were found to either remain within their subgroup or transition
from either subgroup I (poor prognosis) or II (good prognosis) to
the moderate prognosis subgroup V (Supplementary Fig. 6a).
Interestingly, no patient transitioned from subgroup II (best
survival) directly to subgroup I (worst survival) or vice versa over
time, 9 patients changed through the moderate subgroup, while
12 stayed in the same subgroup. Additionally, no functional class

changes observed with almost all samples belonging to functional
class III. When including transcriptomes from healthy volunteers
in our cluster analysis, the highest proportion of healthy
volunteers (39.1%) grouped with subgroup II patients (better
prognosis) (Supplementary Fig. 6b). To further investigate the
defining characteristics of the three largest subgroups, we
interrogated both their gene expression profiles and clinical
features to define their endophenotype.

Relative expression of immunoglobulins define RNA-based
subgroups of IPAH. We next interrogated the three largest RNA-
based subgroups using a multivariate penalised regression to
identify the relationship between gene expression profiles and each
of the three subgroups. The most parsimonious model revealed 57
genes with measurable association to the subgroups. ALAS2 (ery-
throid ALA-synthase), a catalysing haeme biosynthesis enzyme,
appeared in the signatures for both subgroups I and II, and was the
most differentially expressed gene (>2-fold) between the two sub-
groups. Several immunoglobulin light chain genes (IGKV and
IGLV) were key markers for the subgroups, and these were found to
be either downregulated in subgroup I (poor prognosis) or upre-
gulated in subgroup II (good prognosis; Fig. 3a). Other than
immunoglobulins, Noggin, a bone morphogenetic protein 4
antagonist, and inhibitor of hypoxia-induced proliferation23, was
the gene with the highest positive regression coefficient for sub-
group II, underlining its association with good prognosis. BMP
antagonist Noggin and immunoglobulin genes associated with the
good prognostic subgroup II were all downregulated by more than
twofold in subgroup I (Fig. 3b), fitting with contemporary under-
standing of perturbed BMP and inflammatory signalling in PAH
pathogenesis16, 21, 24. Across the three major subgroups, the relative
expression level of immunoglobulins ranged from low, intermediate
and high for subgroups I, V and II, respectively (Fig. 3a, c), while
Noggin showed significantly higher expression in subgroup II
(Supplementary Fig. 7).

Differential immune cell composition between IPAH sub-
groups. To ascertain whether the large expression differences in
immunoglobulin genes associated with subgroups I and II also
corresponded to different levels of immune activity, we decon-
voluted the RNA profiles to estimate the proportions of immune
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cell types in each sample. Significant differences (p < 0.01) in the
proportion of lymphocytes and neutrophils were observed
between samples in subgroup I and II (Fig. 4a and Supplementary
Fig. 8). In particular, CD4/CD8 T cells and memory B cells were
significantly more abundant in subgroup II where we observed
upregulation of immunoglobulins. The lower proportion of
lymphocytes (B cells and T cells) and higher proportion of neu-
trophils in the poor prognosis subgroup I was found to be sta-
tistically significant (Supplementary Table 2) and validated by
clinical whole-blood cell counts (Fig. 4b). A higher
neutrophil–lymphocyte ratio is known to be an indicator of poor
overall survival25. The differences observed in CD4 T cells and
memory B cells may be due to changes in MHC class II antigen
presentation genes, such as HLA-DP. We have previously iden-
tified the HLA-DPA1/DPB1 rs2856830 genotype to be strongly
associated with survival in a large IPAH GWAS study, with the C/
C homozygous genotype conferring increased survival compared
with the T/T genotype, despite similar baseline disease severity10.
Consistent with this genotype association with prognosis, we
found that there was a significantly higher proportion of patients
(p= 0.009) with the C/C genotype in subgroup II (good survival)
compared with subgroup I (poor survival). This difference in
variant frequencies between subgroups was not seen in known
genetic risk factors for H/IPAH9, including BMPR2 and SOX17
(Fig. 4c, Supplementary Fig. 9 and Supplementary Table 3).

Common clinical characteristics across RNA subgroups.
Patients in this cohort were diagnosed at a median age of 45 years
(IQR= 35–59 years) and sampled at a median age of 52 years
(42–64) with an average of 5.3 years’ time between diagnosis and
sampling. As shown in Table 1, patients in subgroup I were
significantly older (p value < 0.01) at 57 [45–70] years than the

other subgroups. Consistent with the incidence rate of IPAH in
the UK population3, patients in the cohort were predominantly
females (70%). Patients in the subgroups were also predominantly
females with 62%, 73% and 70% in subgroups I, II and V,
respectively. Across the whole cohort, 16.4% of patients presented
positive pulmonary vasodilator response, 44.4% were in Func-
tional Class (FC) III at sampling date with 6-minute walk distance
(6MWD) of 387 m and a mean N-terminal (NT)-proBNP of
222.5 [78.9–1162.8] ng/ml. When the cohort was stratified, sub-
group I had the highest proportion of FC III (50.4%), whereas
subgroup II had the highest proportion of patients for FC I and II
(16.5% and 41.3%, respectively, p value= 0.013). The lowest
6MWD (median= 327 m, p < 0.01) and the highest N-terminal
(NT)-proBNP was (median= 345.0 ng/ml, p= 0.055) were
observed in patients from subgroup I (poorest survival group).
Diagnostic RHC across the cohort showed mean pulmonary
arterial pressure (mPAP) was 54 (46–61) mmHg, pulmonary
arterial wedge pressure (PAWP) was 10 (7–12) mmHg and CO
was 3.8 (3.0–4.9) l/min at diagnosis. The cohort at the time of
sampling, 143 (40.2%) of the patients were FC II and 158 (44.4)
FC III with a median 6MWD of 387 m, pulmonary vascular
resistance (PVR) was 8.9 Wood units and an NT-proBNP
222.5 ng/ml suggestive of a slight improvement of disease phe-
notype in response to vasodilator therapy. The full demographics
table can be found in Supplementary Data 2.

Clinical signatures describe RNA-based subgroups. Identifica-
tion of specific clinical characteristics associated with each
transcriptome-derived subgroup could explain how the gene
expression patterns manifest into differences in patient outcome.
We therefore used supervised machine learning with feature
selection to identify the most important clinical features to
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describe the subgroups. The full list of clinical features used by
the multivariate classifiers are described in Supplementary section
'Clinical features identification: Supervised learning' and in table
format in Supplementary Data 2. Each clinical feature was
assessed individually in a univariate model (Fig. 5a and Supple-
mentary Fig. 10) and in combination with other features (mul-
tivariate model). Ensemble feature selection was used to identify
reliable sets of clinical features that describe signatures for the
RNA subgroups. The most important features in the signature for
subgroup I irrespective of feature selection method were
C-reactive protein (CRP), creatinine, age of diagnosis, body mass
index (BMI) and 6MWD. For subgroup II, the important features
were CRP, creatinine, age of diagnosis, BMI and 6MWD, oxygen
saturation (pre-6MWD) and right atrial area (RAA) (by echo-
cardiography). CRP, 6MWD, urate, pulmonary vascular

resistance (PVR), white blood cell count (WBC) and positive
acute vasodilator challenge (at diagnostic right heart catheter)
characterised subgroup IV.

CRP and 6MWD were the only clinical features present in
signatures for subgroup I, II and V. Higher CRP was a marker for
subgroup I, whereas lower levels indicated subgroups II and V. In
contrast, 6MWD was negatively associated with subgroup I and
positively with subgroups II and V. CRP showed a 37.19%
increase in subgroup I compared to the average for subgroups II
and V, 20.75% reduction in subgroup V compared to the average
for subgroup I and II and 47.86% reduction in subgroup II
compared to the average for subgroups I and V. 6MWD was
29.05% lower in subgroup I compared to the average for II and V,
and increased by 7.63% in subgroup V compared to the average
for II and I and 16.97% increase in subgroup II compared to the
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average for I and V. Five clinical features were present in
signatures for subgroup I and II but had opposite coefficients
(Fig. 5b). Higher age of diagnosis, BMI, RAA and creatinine are
associated in subgroup I, whereas lower levels of those three
features are associated with subgroup II. Subgroup I has 17.8%
higher average age compared to the average for II and V and
21.2% lower in subgroup II compared to the average for I and V.
BMI was 13.1% higher in subgroup I compared to the average for
II and V, and 12.9% lower in subgroup II compared to the
average for I and V. Additionally, creatinine was higher by 12.8%
in subgroup I compared to the average for II and V and lower by
14.4% in subgroup II compared to the average for I and V. RAA
was higher by 6.8% in subgroup I and lower by 6.3% in subgroup
II. In contrast, there was a 27.6% reduction of renal sodium in
subgroup I compared to the average for II and V, and 26.7%
increase in subgroup II compared to the average for I and V.

Validation of clinical signatures on an independent cohort. To
validate the relationship between clinical and gene features in the
RNA subgroups, we used the clinical feature signatures of the
subgroups to classify patients in an independent cohort of I/
HPAH patients (n= 197) where whole-blood RNA profiling was
not performed (Fig. 5c). Similar to the discovery cohort, patients
were diagnosed at a median age of 52 years (IQR= 39–67) and

67% were female. In all, 17.7% of the patients showed positive
pulmonary vasodilator response and the majority were cate-
gorised in Functional Class III (66%) with a 6MWD of 295m
(170–396) and NT-proBNP of 796 ng/pl (128–1092). Their
mPAP was 51 mmHg (42–57) and PAWP was 9 mmHg (6–11).
The clinical features associated with RNA subgroups from the
discovery cohort were used to classify this validation cohort. Our
supervised approach identified three subgroups similar to our
discovery cohort subgroups I, II and V (Table 2). These sub-
groups also displayed differences in their 10-year survival out-
come from diagnosis (Fig. 5d). Those characterised as subgroup I
based on their clinical features (corresponding to the low Noggin
and immunoglobulin expression subgroups from RNAseq)
(n= 96) demonstrated the lowest survival of 71% from the time
of diagnosis. Subgroup V (corresponding to the immune neutral,
intermediate RNAseq subgroup) (n= 31) also had an inter-
mediate survival of 86%, while patients in Subgroup II (corre-
sponding to the best surviving subgroup with upregulated Noggin
and immunoglobulin genes) showed a very high survival rate of
97.2% (n= 96). These results provide key validation of the exis-
tence of endophenotypes for the three major subgroups of
patients within the H/IPAH clinical classification group, and that
these new subgroups can be identified using routinely collected
clinical features associated with RNA dysregulation.

Table 1 Major clinical characteristics of the three main RNA subgroups in the discovery cohort (n= 359) at the time of sampling.

Low-risk subgroup II (high
immunoglobulin)

Intermediate-risk subgroup V
(intermediate immunoglobulin)

High-risk subgroup I (low
immunoglobulin)

All patients

n 112 89 129 359
Age, years 46 [37–56] 52 [41–62] 57 [45–70] 52 [42–64]
Age at diagnosis, years 41 [31–51] 46 [37–55] 52 [42–67] 47 [35–59]
Gender:Female 82 (73%) 69 (78%) 80 (62%) 253 (70%)
Vasoresponse 10 (21.7%) 6 (13.6%) 6 (16.2%) 23 (16.4%)
Treatments
Phosphodiesterase 5 Inhibitors
(PDE5i)

12 (15.4%) 16 (21.9%) 22 (21.8%) 53 (19.4%)

Endothelin receptor
antagonist (ERA)

6 (7.69%) 13 (17.8%) 8 (7.92%) 33 (12.1%)

PDE5i & ERA combination 42 (53.8%) 30 (41.1%) 53 (52.5%) 134 (49.1%)
Prostacyclin therapy 3 (3.85%) 1 (1.37%) 3 (2.97%) 7 (2.56%)
Calcium channel blockers 15 (19.2%) 13 (17.8%) 14 (13.9%) 45 (16.5%)
WHO functional class
I 18 (16.5%) 10 (11.2%) 6 (4.7%) 35 (9.8%)
II 45 (41.3%) 36 (40.4%) 44 (34.1%) 143 (40.2%)
III 43 (39.4%) 40 (44.9%) 65 (50.4%) 158 (44.4%)
IV 3 (2.8%) 3 (3.4%) 14 (10.9%) 20 (5.6%)
6-minute walking distance, m 397 [338–500] 420 [367–464] 327 [183–390] 387 [300–449]
NT-proBNP, ng/l 131.7 [54.5–362.0] 185.5 [76.3–463.5] 345.0 [91.0–1556.1] 222.5

[78.9–1162.8]
Forced expiratory volume [%
predicted]

92 [82–101] 84 [72–98] 78 [66–98] 85 [68–100]

Forced vital capacity [%
predicted]

101 (20) 99 (24) 93 (29) 97 (24)

Transfer factor of lung for carbon
monoxide [% predicted]

93 [87–106] 97 [92–101] 88 [67–96] 94 [87–103]

Diagnostic Right Heart Catheter Study
Mean pulmonary artery
pressure, mmHg

47 [39–60] 52 [37–65] 56 [41–65] 51 [39–63]

Mean right atrial pressure, mmHg 8 [4–10] 8 [4–11] 11 [6–14] 9 [4–12]
Mean pulmonary arterial wedge
pressure, mmHg

10 [7–12] 10 [8–13] 12 [10–14] 11 [8–13]

Cardiac Index, l/min/m2 2.3 [1.6–2.8] 2.2 [1.7–2.4] 1.9 [1.5–2.5] 2.2 [1.6–2.5]
Pulmonary vascular resistance,
Wood Units

8.1 [5.7–14.1] 15.0 [5.9–16.1] 8.4 [5.9–13.2] 8.9 [5.7–15.0]

Intervals describe first and third quartiles. Parentheses describe standard deviation (SD).
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Clinical signatures are associated with subgroup-specific genes.
We assessed the relationship between gene and clinical features of
the subgroups by measuring the correlation between the most
predictive features in both signatures. Immunoglobulins
IGHV2.5, IGKV4.1, IGLV2.8 and IGHM (Spearman rho=
−0.354, -0.342, −0.334, −0.297, respectively, p value
<1.11 × 10−5) are negatively correlated with age of diagnosis
(Fig. 5e). Indeed, we observed lower expression of immunoglo-
bulin in poor prognosis subgroup I where there were older
patients. Noggin was negatively correlated with age of diagnosis
(rho=−0.443) but positively correlated with oxygen saturation
(rho= 0.275). Interestingly, ALAS2 correlated most strongly with
BMI (rho= 0.382) but showed an inverse correlation with
6MWD (rho=−0.323). This is consistent with our observations
in the poor prognostic subgroup I where patients with higher
expression of ALAS2 also had higher BMI and shorter walk dis-
tances. Genes negatively correlated with BMI included immu-
noglobulins (IGKV4.1, IGKV2.24 and IGKV1.27).

Gene expression in clinical-feature defined subgroups.
Although the RNAseq whole transcriptome was not measured in
this internal validation cohort, we compared gene expression
differences between subgroups in this cohort using TaqMan PCR
for 17 of the 27 genes (GAPDH used as the endogenous control
gene) previously associated with the subgroups and/or clinical
variable correlations. Nine of the 11 genes we measured
demonstrated a fold change between subgroup I and II in the
same direction as the discovery cohort (Fig. 6a). Differences in
expression of key genes (IGHM, IGKV2.24, IGLV6.57 and NOG)
were significant (p < 0.01) between subgroups I and II (Fig. 6b
and Supplementary Table 4).

External validation of gene and clinical feature correlations.
The correlations between gene and clinical features observed in
the discovery cohort were also examined in our validation cohort

of 91 subjects, and also in an external cohort of 32 subjects with
RNA collected from PBMCs26. We found that 64 of the 90 (71%)
correlations measured in these two independent cohorts were
consistent with our discovery cohort (Supplementary Table 5).

Discussion
In this study we describe a machine learning approach to identify
transcriptome associated subgroups or endophenotypes of
patients with heritable or idiopathic PAH. We defined five dis-
tinct clinical subgroups based on clinical presentation, severity
and survival. The three largest subgroups displayed significantly
different clinical characteristics, severity and survival outcomes
suggesting that a molecular classification for PAH may be pos-
sible. We also identified patients that progressed through these
subgroups over time with treatment and disease progression, the
majority of which remaining within their subgroup with only a
few transitioning to and from the intermediate subgroup V. The
dysregulation of immunoglobulin genes, NOG and ALAS2, were
most predictive of the subgroups with the best and worst prog-
nosis, suggesting that these genes are key in determining patient
outcome, and may therefore represent future drug targets but also
a tool to identify patients responsive to current treatments.
Estimates of cell counts in whole blood revealed elevated levels of
lymphocytes, in particular T cells, and lower levels of inflam-
matory markers in the better prognosis subgroup. We further
generated classifiers based on associated clinical features of these
new RNA subgroups and used it to identify subgroups that dif-
fered in survival outcome in an independent cohort.

The most striking difference between the best and worst sur-
viving subgroups was in immunoglobulin transcription. The
upregulation of transcripts coding for the variable domain of
immunoglobulin light chains (IGLV and IGKV genes) that par-
ticipate in antigen recognition were markers of subgroup II, while
their downregulation were markers of subgroup I. Differential
levels of IGVL and IGKV gene transcripts, as seen in subgroup I,

Table 2 Major clinical characteristics of the three subgroups within the validation cohort (n= 197) at time of diagnosis.

Subgroup I Subgroup II Subgroup V All patients

n 96 70 31 197
Age, years 65 [55–74] 40 [29–49] 45 [30–63] 54 [39–67]
Gender: female 56 (58%) 58 (83%) 18 (58%) 132 (67%)
Vasoresponse 7 (16.3%) 8 (21.6%) 2 (12.5%) 17 (17.7%)
Treatments
Phosphodiesterase 5 inhibitors (PDE5i) 23 (29.5%) 10 (18.5%) 8 (29.6%) 41 (25.8%)
Endothelin receptor antagonist (ERA) 3 (3.85%) 5 (9.26%) 1 (3.70%) 9 (5.66%)
PDE5i & ERA combination 48 (61.5%) 29 (53.7%) 17 (63.0%) 94 (59.1%)
Prostacyclin agonist 1 (1.28%) 2 (3.70%) 1 (3.70%) 4 (2.52%)
Calcium channel blockers 3 (3.85%) 8 (14.8%) 0 (0.00%) 11 (6.92%)
WHO functional class
I 4 (4.2%) 11 (15.7%) 2 (6.5%) 17 (8.6%)
II 22 (22.9%) 26 (37.1%) 15 (48.4%) 63 (32.0%)
III 60 (62.5%) 32 (45.7%) 12 (38.7%) 104 (52.8%)
IV 10 (10.4%) 1 (1.4%) 2 (6.5%) 13 (6.6%)
6-minute walking distance, m 306 (152) 419 (123) 409 (120) 360 (148)
NT-proBNP, ng/l 492 [196; 1327] 188 [90.0; 400] 266 [128; 499] 303 [128; 1092]
Forced expiratory volume [% predicted] 84 (21) 90 (19) 90 (17) 87 (20)
Forced vital capacity [% predicted] 94 (21) 98 (20) 99 (15) 96 (20)
Transfer factor of lung for carbon monoxide [% predicted] 92 (15) 98 (17) 96 (11) 95 (15)
Diagnostic Right Heart Catheter Study
Mean pulmonary artery pressure, mmHg 50 [43; 57] 48 [42; 58] 49 [41; 57] 49 [42; 57]
Mean right atrial pressure, mmHg 9 [7; 12] 7 [5; 10] 6 [3; 7] 8 [5; 12]
Mean pulmonary Arterial wedge pressure, mmHg 10 (3) 8 (4) 8 (4) 9 (4)
Cardiac Index, l/min/m 2.0 [1.7; 2.5] 2.1 [1.7; 2.5] 2.0 [1.8; 2.4] 2.0 [1.7; 2.5]
Pulmonary vascular resistance, Wood Units 11 [7; 14] 11 [9; 15] 12 [10; 14] 11 [8; 15]

Intervals describe first and third quartiles. Parentheses describe standard deviation (SD).
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may control self-reactivity of human antibodies27, and the
reduction in the diversity of light chains has been associated with
several autoimmune diseases, including systemic lupus erythe-
matosis (SLE), type 1 diabetes, and myasthenia gravis28, 29. The
association between autoimmunity and PAH has long been dis-
cussed. There are known associations with autoimmune diseases
in other forms of PAH such as systemic sclerosis, SLE, Sjogren’s,
etc., and the dysregulation of immune cells including T cells, B
cells30 and natural killer cells31 are well described in IPAH, fur-
ther validating that our unbiased approach has identified
important subgroups. While we detected significant differences in
lymphocyte, neutrophil and CRP levels in the blood samples of
subgroup I patients, deeper genomic characterisation of T cell
receptor and B cell receptors may be needed to understand the
role of adaptive immunity on PAH progression.

Beyond the differences in immunoglobulin genes, the expres-
sion patterns that defined each subgroup also highlighted haeme
biosynthesis through ALAS2 was a marker for subgroup I and
correlated with greater disease severity. Previous gene expression
studies across multiple forms of PH, including IPAH, showed
significantly increased expression of ALAS2 in both systemic
sclerosis-associated PAH (SSc-PAH) and IPAH32. In that study,
in IPAH patients increased ALAS2 levels also demonstrated
strong correlation with right atrial pressure, pulmonary vascular
resistance, pulmonary artery saturation and cardiac index32.
These data, and our own observations (Fig. 3), are suggestive of a
role for ALAS2, iron33 and hepcidin34, 35 in pulmonary vascular
remodelling and PH. Subgroup II with better prognosis can be
partially defined by the downregulation of ALAS2 and increased
expression of NOG, a BMP antagonist with high-affinity binding
to BMP4 (ref. 36) which has been shown to inhibit hypoxia-
induced proliferation of PASMC23, and previously associated
with BMI in PAH37 has been proposed as a potential therapeutic
target38. The role of Noggin in the low-risk group is particularly
interesting given the proposed role of both Gremlin and Noggin

in the mechanism of action for Sotatercept in the treatment of
PAH39.

Previous studies have identified clinical features collected
during the diagnosis of PAH that also have prognostic utility. The
clinical features identified here share many commonalities with
those previously included in widely used risk scores (e.g.
REVEAL, ERS) assessment for PAH, including, for example, 6-
MWD, WHO functional class, and NT-proBNP4, 40, 41. This
provided further validation that the transcriptomic profile asso-
ciated with these subgroups provide insight into the biology of
disease, and perhaps future drug targets. In addition to bio-
markers such as CRP which is known to be elevated in PAH and
CTEPH and shown to be predictive of outcome and sensitive to
therapies42 and NT-proBNP with high levels highly prognostic of
right ventricular failure43, age of diagnosis, BMI and renal
function were also identified. Renal function has previously been
associated with outcome in PAH, although likely because of
cardiac function44. The age of diagnosis is often discussed as a
consequence of genetics45, or occurrence of co-morbidities;
however, in our study the age of diagnosis was most strongly
associated with the immunoglobulin light chain genes and Nog-
gin. Carriers of BMPR2 mutations often present with PAH at a
younger age and have a worse survival46 so the association with
Noggin is interesting in the context of perturbed BMP signalling.
However, the patients with BMPR2 mutation did not cluster
within one subgroup perhaps fitting with the concept that it is
dysfunctional TGFβ/BMP signalling rather than the precise
mutation that is important.

There is a well-described sex-paradox in PAH47 with a 4:1
female to male prevalence but the worse survival in male
patients48, 49. During our initial analyses of the RNAseq data, we
identified subclusters exclusively defined by sex genes. To miti-
gate against any gender bias, we excluded sex-chromosome-
associated genes in our preprocessing steps of the analysis pipe-
line. Although we cannot reject the possibilities of the
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aforementioned genes contributing towards PAH or resilience, we
believe that their removal ensures that the clustering algorithm
captures heterogeneity independent of sex-associated expression
variation. However, the interactions between gender and other
autosomal genes in the context of PAH require further study.

The application of unsupervised learning from molecular
profiles of IPAH is a powerful approach for revealing subgroups
within a heterogeneous population that has not been defined
clinically. Most studies employ widely used clustering algorithms
without exploring their data suitability. By contrast, in this study
we determine spectral clustering as the most consistent method in
detecting differences and subsequently partitioning RNA-
sequencing samples using robust performance criteria. Further-
more, previous studies have focused on clustering all PAH cases
using a small set of immune markers, and captured immune
phenotypes overlooked by the broad clinical classifications50.
We used a much larger set of features, i.e., the whole tran-
scriptome and clustered cases lacking causal pathologies, and also
found immune phenotypes that differentiated the subgroups.
While we controlled for confounding factors that affect clustering,
such as gender-associated genes (Supplementary Fig. 1), there
may yet be other hidden factors, such as viral infections related to
age and gender that could influence patterns observed from whole
blood51. The large degree of validation of the subgroups using
both transcriptomic and clinical features to define them provides
strong evidence that these endophenotypes are reproducible and
may be useful to risk stratify or biologically classify subgroups of
IPAH patients. However, further transcriptomic studies profiling
patients at multiple timepoints are required to fully understand
the dynamics of the immune components we identified, the fre-
quency of acute infections, and the impact on PAH phenotype.

Transcriptomic profiling of the blood samples coupled with
clinical data from IPAH patients provides an insight into endo-
phenotypes that may describe this heterogeneous disease based
on RNA expression. The use of additional ‘omic' biomarkers to
provide further molecular profiles (e.g. DNA, protein, metabo-
lites) as stable biomarkers for stratifying patients could further
improve our algorithmic predictions of patient outcomes and
reveal endophenotypes to be targeted therapeutically. Further-
more, these data hold promise that these molecular endopheno-
types may be tractable to existing therapies, may offer an
alternative approach to tailor, and assess individual treatment
response, in PAH as well as offering insights into disease
pathogenesis that can be targeted by therapeutics as a precision
medicine approach52 in PAH and potentially other diseases to
drive molecular clinical classification suited to the future preci-
sion medicine era in healthcare.

Methods
Study design. The Cohort study of idiopathic and heritable PAH is an observa-
tional, prospective and longitudinal study of patients with idiopathic and heritable
PAH (clinicaltrials.gov NCT019072950). The Sheffield Teaching Hospitals
Observational Study of Pulmonary Hypertension, Cardiovascular and other
Respiratory Disease (UK REC Ref 18/YH/0441) is a longitudinal study of patients
with suspected pulmonary hypertension or an associated cardiovascular or
respiratory condition. Follow-up information is collected as a part of routine
clinical care every 6 months. The study allows recruitment of both incident and
prevalent cases. Patients consented to the study agreed to have blood taken for
next-generation sequencing and other omics studies. Healthy adult controls were
recruited for comparison studies. The subsequent whole-blood sample collection
process is described in ref. 13.

Ethics. All UK samples were obtained following informed consent into the UK
National Cohort Study of Idiopathic and Heritable Pulmonary Arterial Hyper-
tension (clinicaltrials.gov NCT01907295; UK REC Ref. 13/EE/0203) and/or the
Sheffield Teaching Hospitals Observational Study of Pulmonary Hypertension,
Cardiovascular and other Respiratory Disease (UK REC Ref 18/YH/0441). Data
were obtained from samples collected at the University of Arizona Pulmonary

Hypertension clinic between 2012 and 2015 following institutional guidelines and
following informed consent.

Participants. Patients diagnosed with I/HPAH, PVOD or PCH, relatives of index
cases and unrelated healthy controls were recruited at nine UK centres and fol-
lowed up by a median of 7.9 years. In total, 358 patients (Supplementary Fig. 11) of
which 96.7% were further verified to be I/HPAH, 13 relatives, and 21 healthy
controls recruited to the I/HPAH Cohort study were analysed. Both prevalent and
incident cases were allowed. Prevalent cases were defined as diagnosed earlier than
6 months before the study initiation. Patients in Cohort study were followed
longitudinally as part of their clinical PAH care. All cases were diagnosed between
March 1994 and November 2016, and diagnostic classification was made according
to international guidelines53. Patients with PAH associated with anorexigen
exposure were considered as IPAH, whereas HPAH was defined by the presence of
a positive family history of PAH. Clinical, functional and haemodynamic char-
acteristics at the time of PAH diagnosis were prospectively entered into the
database. The date of diagnosis corresponded to that of confirmatory right heart
catheterisation.

Following diagnosis, subsequent treatments and follow-ups were at the
discretion of the treating physician, according to the contemporary guidelines. In
most centres, patients were seen every 3–6 months with an assessment of
functional status and exercise capacity. Right heart catheterisation was repeated
when considered necessary by the responsible clinician. Study visits were
performed every 6 months. Healthy controls had been sampled only once and had
clinical information recorded from the time of sampling.

Clinical data capture, processing and quality control. Pseudonymised results of
routinely performed clinical tests reported in either clinical case notes or electronic
medical records (EMR) were stored in web-based OpenClinica (OC) data capture
system (Community edition). Twenty electronic Clinical Case Report Forms
(eCRFs) distributed across seven events (Diagnostic, Continuous data, Follow-up,
Epidemiology questionnaire, Suspension, Relatives, Unrelated healthy control)
were constructed to accommodate routinely available clinical information. Details
regarding data verification procedures were previously described in detail54.

Information about participants’ status was collected every 6 months (via
National Health System Digital Spine portal or an equivalent local system). Current
analysis was performed on the census performed on 31 January 2020. Two risk
assessment strategies were applied to the data. Reveal risk score4 and abbreviated
ERS risk scores55 were calculated in all patients who had the necessary minimum
phenotypic information available. Patients who died or were transplanted were
suspended on the day of the event, patients who withdrew from the study were
censored on the date of the last visit, the reason for withdrawal was recorded.

Missingness assessment and imputation. Missingness rates, patterns and causes
were assessed per individual, variable and centre and visualised with vim package
v5.1.1R (Supplementary Fig. 12). Multiple imputation by the chain equations
method was used to impute missing data (mice v3.8.0 package R)56. The impu-
tation model included all variables that were necessary in the analysis model,
including cumulative baseline hazard function and variables that predicted both the
incomplete variable and if the incomplete variable was missing like the centre and
whether the case was incident or prevalent. Quality of predictors was assessed using
outflux–influx plot. Numerical data were imputed with predictive mean matching
(pmm), factors with two levels were imputed using logistic regression, factors with
more than two levels with multinomial logit model and ordered factors with more
than two levels with the ordered logit model. Transformed variables (BMI, ratios,
score sums) were imputed as just another variable as well as passively with good
concordance. The visiting sequence was set to 'monotone' to speed up convergence.
The number of iterations was set to 20. Following the rule of thumb proposed by
White et al.57 that the number of imputations should be at least equal to the
percentage of incomplete cases, the procedure was performed at m= 50. The
convergence of the algorithm was checked, and the means and standard deviations
of imputed values were plotted over 20 iterations. The streams of numerical and
factor variables intermingled and showed no trends at later iterations. Factors
influencing the accuracy of the imputation include the variability in time between
diagnosis and sampling, higher missingness in clinical data for prevalent cases
(diagnosed sometimes many years ago), and differences in measurement error
between centres which followed different protocols for clinical data collection.

RNA data preprocessing. A number of preprocessing steps were required to
prepare the raw sequencing data for unsupervised machine learning. High-
throughput sequencing generated raw pair-end counts of 205,259 transcripts across
508 samples that belong to GenCode Release 28 (GRCh38.p12). Consequently,
Salmon (https://combine-lab.github.io/salmon/) was used to estimate the relative
abundance of the transcripts (TPM, units of transcripts per million) which were
then mapped to genes (n= 60,144) using the tximport R package. Only genes with
more than two reads (in a transcript level) in at least 95% of control and patient
samples were considered and 11 additional male genes were removed (n= 25,955).
Hyperbolic arcsine transformation (package base v3.6.0) was applied to the final
RNAseq TPM matrix. Further information on quality control of samples and genes
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can be found in the Supplementary Methods. The RNA-sequencing and clinical
data of healthy controls were not used in the main pipeline of this study. A
secondary clustering with all patient and healthy samples was implemented to
demonstrate the lack of pure patient and healthy subgroups within our cohort
(Supplementary Fig. 6b). Principal component analysis of expression profiles from
samples with a second replicate clustered together according to the first four
principal components (Supplementary Fig. 13).

Spectral clustering: gene expression subgroup identification. We performed
cluster analysis to partition IPAH patients to distinct RNA-based groups. The
spectral clustering model (package kernlab v0.9-29) was selected as the most sui-
table unsupervised learning algorithm based on the highest partitional consistency
when comparing multiple dissimilar algorithms (Supplementary Table 6). For the
spectral clustering method, data points (i.e. patients) are embedded and partitioned
in a low-dimensional space in the form of a similarity graph, rather than being
characterised by more than 25,000 gene dimensions. High partitional consistency
was defined as the high adjusted Rand Index (package fossil v0.3.7) and low
standard deviation calculated between different variations of each clustering
algorithm (k-means, spectral, hierarchical clustering), as described in Clustering
algorithm selection. For the selection of the most appropriate clustering algorithm
we utilised 25,955 genes across 359 IPAH patient samples (discovery cohort) after
further filtering for repeated same-visit samples and non-H/IPAH diagnosis. We
compared three fundamentally different methods (hierarchical, k-means and
spectral) and use partitioning consistency to determine which method picks up an
underlying signal from our data type (RNA-sequencing). As shown in Supple-
mentary Fig. 14, spectral clustering showed the highest consistency (Adjusted Rand
Index) in detecting differences and subsequently partitioning patients in similar
clusters independently of the kernel. Notable is the difference in intra-agreement of
spectral (~75%) and k-means (−13%) clustering, which highlights the importance
of the extra step of mapping data in a low-dimensional space (as a similarity graph)
in spectral clustering. To run the main spectral clustering partitioning we first
selected the most relevant gene set by ranking all genes based on the variability of
their expression across patient samples using the stats v3.6.0R package (Supple-
mentary section 'Feature selection of genes'). Subsequently, several candidate gene
sets of increasing size were drawn from the top ranking gene list and the one that
generated subgroups of highest stability, according to package fpc v2.2-3, was
selected (Supplementary section 'Highest stability gene set'; Supplementary Fig. 15).
This resampling bootstrap approach determined that the most stable gene set was
composed from the 300 most variable genes. For the secondary clustering run with
only IPAH, 1700 variable genes were selected as the most stable gene set for
clustering.

The number of IPAH subgroups was estimated through ensemble learning58

utilising 15 internal indexes calculated using the package diceR v0.6.0
(Supplementary sections 'Optimal number of subgroups k' and 'Internal Index
Voting'). A representation of patient flow across k can be found at Supplementary
Fig. 16. The Radial Basis function kernel was used as the similarity measure with
five target subgroups, identified as the optimal number of subgroups by an
ensemble learning method. We elected to investigate k= 5 subgroups, since in
clustering contexts it is safer to overestimate than underestimate the number of
subgroups to prevent loss of information. However, k= 3 subgroups were voted
from the vast majority of methods and we expect them to be the main subgroups.
Further information on the selection of clustering algorithms and parameters can
be found in the Supplementary Methods.

Analysis of subgroup differences. Survival analysis was performed (R package
survival 3.1-7) on the main (Supplementary Fig. 17) and validation cohorts to
identify the survival differences between subgroups. Kaplan–Meier survival curves
from diagnosis and sampling were calculated for the main patient cohort (per
spectral subgroup) as well as the validation cohort (per predicted subgroup).
Subsequently, two multivariate Cox models were fitted and Hazard ratios calcu-
lated on the main cohort once adjusting for gender and once adjusting for the
composite clinical signature discovered by supervised machine learning. Gene
signatures for each subgroup were identified using LASSO regression models with
cross-validation (package glmnet 3.0-1). The variables with the 5% highest coef-
ficients for each class were highlighted (Supplementary Fig. 18), and the full list of
non-zero coefficients for each class can be found in Supplementary Data 3. The
pathfinder R package was used to highlight enriched gene pathways between
subgroups and differential expression analysis using the DESeq2 package59 was
performed on genes associated with the subgroups (Supplementary Fig. 19). Gene
expression differences across subgroups are presented in Supplementary Fig. 20. All
statistical tests between subgroups were two-sided and Bonferonni adjusted for
multiple testing.

Identifying clinical signatures of subgroups. The dataset was initially cleaned
and filtered on 119 features that were identified by a domain expert from the
original 887 features that described the dataset. Subsequently, any feature that had
more than 5% missing data was dropped, and categorical features numerically
encoded.

All ML tasks were carried out using Scikit-learn60 ML framework version 0.23.2
in a Python 3 environment. As machine learning classifiers, we used Logistic
Regression (LR), support vector machines (SVM), Random Forest (RF) and k-
nearest neighbour (kNN). RF is a powerful ensemble learning technique especially
for high-dimensional classification tasks. Further details about classifier training
and feature selection can be found in the Supplementary Methods.

Classification of new patients using signatures. Each clinical signature was used
to develop a classification model trained on the discovery cohort to classify new
patients into the RNA-based subgroups. Classification models were built using
SVM61, RF62, LR63 and KNN64. The candidate signature that obtained the best
performance was selected. This process was repeated for all signature sizes, s= 1 to
s= 20, for subgroups I, II and V. A final signature for each subgroup was selected
based on a compromise between the fewest number of features (s= 1 to s= 20)
and classification performance. Final selected signatures for each of the subgroups
were pooled to create a composite signature, which was then used in a multi-class
classification model. The model was trained on the discovery dataset to dis-
criminate between subgroups I, II and V, used to predict subgroup membership of
an unseen validation dataset. The predicted subgroup membership was then used
to calculate survival of predicted subgroups. Survival of the predicted subgroups
was compared to known survival of subgroups in the discovery dataset for vali-
dation purposes.

qPCR on validation cohort. Frozen Tempus tubes collected from patients in the
validation cohort, collected under the UK National Cohort study, were obtained;
RNA was extracted using Maxwell® 16 LEV simplyRNA Blood Kit (Cat.# AS1310)
as described in the manufacturer’s instructions on the Maxwell® 16 Instrument
(Cat.# AS2000). Extracted RNA was transcribed using the High-Capacity-RNA-to-
cDNA kit (Thermo Fisher Cat.# 437406) following the manufacturer’s instructions.
Resultant cDNA was analysed using custom TaqMan array cards (Thermo Fisher
Cat.#4342249) with Fast Advanced Mastermix (Thermo Fisher Cat.# 4444964);
damples were run 8 to a card across 25 cards with 24 primer probes (Thermo
Fisher) per sample (18S-Hs99999901_s1, ACTB-Hs00357333_g1, ALAS2-
Hs01085701_m1, BMPR2-Hs00176148_m1, C4BPA-Hs00426339_m1, CRISP3-
Hs00195988_m1, CTSG-Hs00175195_m1, GAPDH-Hs02786624_g1, HPRT1-
Hs02800695_m1, IFI27-Hs01086373_g1, IGHM-Hs00941538_g1, IGHV3-75-
Hs03832008_sH, IGKV2-24-Hs06671746_g1, IGLV6-57-Hs01696637_s1,
LINC00221-Hs01382601_m1, LTF-Hs00914334_m1, MT-RNR1-Hs02596859_g1,
NEBL-Hs01067284_m1, NOG-Hs00271352_s1, NOS2-Hs01075529_m1, NPRL3-
Hs00429221_m1, PI3-Hs00160066_m1, SMIM11A;SMIM11B-Hs00938773_m1,
XIST-Hs01079824_m1). These assays were performed in duplicate using the
Applied Biosystems 7900HT Fast real-time PCR system with the TaqMan Low
Density Array card block following calibration using the TaqMan Low Density
Array Calibration Kit (Thermo Fisher Cat.# 10341465). Ct values were determined
with Automatic thresholding in the SDS2.4 software. GAPDH- Hs02786624_g1
was used as a control. Relative quantity was calculated using the ΔΔCt method.

External cohort validation. An external validation cohort of patients with Group 1
PAH prospectively recruited at the University of Arizona Pulmonary Hypertension
clinic between 2012 and 2015 following institutional guidelines and informed
consent was used. The cohort comprised 84 subjects with Group 1 PAH of whom
32 were diagnosed with idiopathic PAH. For each subject, demographics and
clinical variables were collected26. PBMCs were stored in RNAlater as previously
described.8 In total, approximately 3600 million clusters with paired-end 75 bp
reads (∼35M cluster per sample) were generated from PBMC-derived RNA.

Clinical variable and gene correlations. We calculated correlations between the
clinical and gene signatures we generated in previous steps of this study. For
discovery and validation cohorts we used the rcorr function of R package Hmisc
(version 4.5-0). For the external validation we used the values found in ref. 26.

Study approval. Study approval for the use of sample and data were obtained from
the UK National PAH Cohort Study Data Access Committee (clinicaltrials.gov
NCT01907295; UK REC Ref 13/EE/0203), and the Sheffield Teaching Hospitals
Observational Study of Pulmonary Hypertension, Cardiovascular and other
Respiratory Diseases Scientific Advisory Board (UK REC Ref 18/YH/0441).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The transcriptomic and clinical data used in this study have been deposited in the EGA
(the European Genome-phenome Archive) database under accession code
EGAS0000100553265. In compliance with the Ethics under which these data and samples
have been collected, the transcriptomic data are available through restricted access for
approved researchers who agree to the conditions of use, i.e. keeping it secure and only
using it for approved purposes. To apply for access please contact
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cohortcoordination@medschl.cam.ac.uk. You will receive an application form within
30 days. The ‘UK National PAH Cohort Study Data Access Committee’ will review
requests within 3 months of receipt of the completed application form and if approved,
provide details for access to the RNAseq data stored at the EGA. All requesters must
agree to the data access conditions found in EGA. The data used to generate statistics,
plots and figures are accessible through our interactive portal found in https://sheffield-
university.shinyapps.io/ipah-rnaseq-app/. Source data are provided with this paper.

Code availability
Additionally, the code used to generate the results of this study is publicly available at
https://zenodo.org/badge/latestdoi/299615578 (ref. 66).
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